
Journal of Geometry and Physics 58 (2008) 599–614
www.elsevier.com/locate/jgp

On quasi-Einstein Cartan type hypersurfaces

Małgorzata Głogowska∗

Department of Mathematics, Wrocław University of Environmental and Life Sciences, 50-357 Wrocław, Poland

Received 2 August 2007; received in revised form 5 December 2007; accepted 21 December 2007
Available online 11 January 2008

Dedicated to Professor Dr. Vladislav Viktorovich Goldberg on his 70th birthday

Abstract

We investigate curvature properties of quasi-Einstein Cartan type hypersurfaces in semi-Riemannian space forms.
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1. Introduction

Let (M, g) with dim M = n ≥ 4 be a semi-Riemannian manifold such that its curvature tensor R satisfies on
UC ∩ US ⊂ M

R = φ S + µ g ∧ S + ηG, (1)

where UC , resp. US , is the set of all points of given manifold at which its Weyl conformal curvature tensor C is
non-zero, resp. its Ricci tensor S is not proportional to g, and φ, µ and η are some functions on UC ∩ US . According
to [11], the condition (1) is called the Roter type equation. Consequently, a manifold (M, g), n ≥ 4, satisfying (1) on
UC ∩ US ⊂ M is called a Roter type manifold [11]. Obviously, we will consider manifolds (M, g) with non-empty
UC ∩ US ⊂ M . For precise definitions of the symbols used here we refer to Sections 2 and 3 of this paper. Roter type
manifolds were investigated in [23,24,32,35]. We mention that several spacetimes are Roter type manifolds, e.g. some
Reissner–Nordström–de Sitter spacetimes [35], as well as some generalized Robertson–Walker spacetimes [24]. There
are also other Roter type spacetimes (see [23]). It is known that every Roter type manifold satisfies (see Section 2)

S · R = L1 S + L2 g ∧ S + L3 G, (2)

R · R − Q(S, R) = L4 Q(g,C), (3)

S2
= L5 S + L6 g, (4)
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where L1, . . . , L6 are some functions on UC ∩ US . In [29] it was shown that some 4-dimensional semi-Riemannian
metrics introduced in [1] satisfy (2)–(4). Based on the results of [6,29], in [11] the notion of Akivis–Goldberg type
manifolds was introduced. Namely, a semi-Riemannian manifold (M, g), n ≥ 4, is said to be an Akivis–Goldberg
type manifold if (2)–(4) hold on UC ∩ US ⊂ M . We refer to [11] for a review of the results on Akivis–Goldberg
type manifolds. Obviously, every Roter type manifold is an Akivis–Goldberg type manifold. The converse statement
is not true [11]. Thus Akivis–Goldberg type manifolds form a class of manifolds which is an essential extension of
the class of Roter type manifolds. A semi-Riemannian manifold (M, g), n ≥ 4, is said to be a Cartan type manifold
if on UC ∩ US ⊂ M we have (3) and (4) and

S · R = L0 R + L1 S + L2 g ∧ S + L3 G, (5)

where L0, . . . , L6 are some functions on UC ∩ US . Obviously, every Akivis–Goldberg type manifold is a Cartan
type manifold. The converse statement is not true. Thus Cartan type manifolds form a class of manifolds which is an
essential extension of the class of Akivis–Goldberg type manifolds. A semi-Riemannian manifold (M, g), n ≥ 3, is
said to be an Einstein manifold if

S =
κ

n
g (6)

on M , where κ is the scalar curvature of (M, g). Einstein manifolds form a subclass of the class of quasi-Einstein
manifolds. A semi-Riemannian manifold (M, g), n ≥ 3, is called a quasi-Einstein manifold if at every point x ∈ M
its Ricci tensor S has the form

S = α g + ε w ⊗ w, ε = ±1, (7)

where w ∈ T ∗
x M and α ∈ R. We also mention that another subclass of quasi-Einstein manifolds form Ricci-simple

manifolds, i.e. semi-Riemannian manifolds having the Ricci tensor of rank at most one. Quasi-Einstein manifolds
arose during the study of exact solutions of the Einstein field equations as well as during considerations of quasi-
umbilical hypersurfaces of conformally flat spaces. Quasi-Einstein hypersurfaces were studied among others in [12,
14,19,21,22]. We refer to [2] for a review of results on quasi-Einstein manifolds. It is easy to check that (7) implies

S2
= (κ − (n − 2)α) S + α ((n − 1)α − κ) g. (8)

We also note that from Propositions 2.4 and 2.5 of this paper it follows that consideration on Einstein or conformally
flat manifolds satisfying (2) (or (5)), (3) and (4) is rather not an interesting question.

A manifold (M, g), n ≥ 3, is said to be pseudosymmetric if at every point of M the tensors R · R and Q(g, R) are
linearly dependent. This is equivalent to

R · R = L R Q(g, R) (9)

on UR = {x ∈ M | R − (κ/(n − 1)n)G 6= 0 at x}, where L R is some function on UR . The class of pseudosymmetric
manifolds is an extension of the class of semisymmetric manifolds (R ·R = 0). A geometric interpretation of the notion
of pseudosymmetry is given in [33]. According to [33], pseudosymmetric manifolds are called pseudosymmetric in
the sense of Deszcz (see also [34]). A manifold (M, g), n ≥ 3, is said to be Ricci-pseudosymmetric if at every point
of M the tensors R · S and Q(g, S) are linearly dependent. This is equivalent to

R · S = L S Q(g, S) (10)

on US , where L S is some function on US . The class of Ricci-pseudosymmetric manifolds is an extension of the class
of Ricci-semisymmetric manifolds (R · S = 0) as well as of the class of pseudosymmetric manifolds. A geometric
interpretation of the notion of Ricci-pseudosymmetry is given in [34]. According to [34], Ricci-pseudosymmetric
manifolds are called Ricci pseudosymmetric in the sense of Deszcz. A semi-Riemannian manifold (M, g), n ≥ 4, is
said to be a manifold with pseudosymmetric Weyl tensor ([2], Section 5), if at every point of M the tensors C · C and
Q(g,C) are linearly dependent. This is equivalent to (18) on UC ⊂ M . Manifolds with pseudosymmetric Weyl tensor
we will call Weyl pseudosymmetric in the sense of Deszcz.

We say that (9), (10) and (18) are conditions of pseudosymmetry type (see e.g. [2]). We mention that spacetimes
satisfying some conditions of pseudosymmetry type were classified in [16]. We refer to [2,8] for a review of results
on manifolds satisfying conditions of pseudosymmetry type.
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Let M be a hypersurface immersed isometrically in a semi-Riemannian manifold (N , gN ). If (1), or (2)–(4), or
(3)–(5), hold on UC ∩ US ⊂ M then M is said to be a Roter type hypersurface [32], an Akivis–Goldberg type
hypersurface [11] or a Cartan type hypersurface [32], respectively.

In this paper we consider hypersurfaces immersed isometrically in a semi-Riemannian space of constant curvature
N n+1

s (c) with signature (s, n + 1 − s), n ≥ 4, where c = κ̃/(n(n + 1)) and κ̃ is the scalar curvature of the ambient
space. It is known that on such hypersurface we have [25]

R · R − Q(S, R) = −
(n − 2)̃κ
n(n + 1)

Q(g,C). (11)

Thus (3) with L4 = −((n − 2)̃κ)/(n(n + 1)) holds on UC ∩ US ⊂ M . Clearly, if (2) and (4), or (4) and (5), hold on
UC ∩ US ⊂ M then M is an Akivis–Goldberg type hypersurface or a Cartan type hypersurface, respectively. As we
noted above, every manifold satisfying (7) also fulfills (8), i.e. (4) with L5 = κ− (n −2)α and L6 = α ((n −1)α−κ).
Therefore, if M is a quasi-Einstein hypersurface in N n+1

s (c), n ≥ 4, and (2), resp. (5), holds on UC ∩ US ⊂ M then
M is an Akivis–Goldberg type hypersurface, resp. a Cartan type hypersurface.

Let H be the second fundamental tensor of a hypersurface M in N n+1
s (c), n ≥ 4. In [32] (Theorem 3.1) (see also

Theorem 3.1 in Section 3.1) it was shown that if the tensor H2 is expressed by a linear combination of H and g at
x ∈ UC ∩ US ⊂ M then (1) holds at this point. Therefore we restrict our considerations to the set UH ⊂ M of all
points at which H2 is not expressed by a linear combination of H and g. It is known that UH ⊂ UC ∩ US ⊂ M ([31],
p. 366; see also Section 3).

The Cartan hypersurface M in the sphere Sn+1(c) is a compact minimal hypersurface with constant principal

curvatures −(3c)
1
2 , 0, (3c)

1
2 of the same multiplicity. Therefore we have UH = M . It is known that the Cartan

hypersurfaces are tubes of constant radius over the standard Veronese embeddings i : FP2
→ S3d+1(c) → E3d+2 ,

d = 1, 2, 4, 8, of the projective plane FP2 in the sphere S3d+1(c) in a Euclidean space E3d+2, where F = R (real
numbers), C (complex numbers), Q (quaternions) or O (Cayley numbers), respectively [3]. The Cartan hypersurface
in S4(c) is a pseudosymmetric quasi-Einstein manifold satisfying R ·R =

κ̃
12 Q(g, R) ([27], Example 2). Every Cartan

hypersurface of dimension n = 6, 12, 24 is a non-quasi-Einstein and non-pseudosymmetric Ricci-pseudosymmetric
manifold satisfying ([28], Proposition 1)

R · S =
κ̃

n(n + 1)
Q(g, S). (12)

From Theorem 4.3 of [13] it follows that every Cartan hypersurface of dimension n ≥ 6 is a Cartan type hypersurface.
Further, (5) with L1 = 0 is satisfied on UH ⊂ M of every Ricci-pseudosymmetric hypersurface M in N n+1

s (c),
n ≥ 4, ([13], Theorem 3.2), i.e. on UH we have (4) and

S · R = L0 R + L2 g ∧ S + L3 G. (13)

In [32] (Theorem 3.3) it was proved that every Ricci-pseudosymmetric hypersurface is a Cartan type hypersurface. In
addition, if M is a Ricci-pseudosymmetric hypersurface in N n+1

s (c), n ≥ 4, satisfying (21) then (13) turns into

S · R = L0 R + S + (L2 − α) g ∧ S + (L3 + α2)G.

Examples of quasi-Einstein Ricci-pseudosymmetric hypersurfaces are given in [19,22].
Our results are related to quasi-Einstein Cartan type hypersurfaces M in N n+1

s (c), n ≥ 4. We can say, with respect
to the above statements, that we consider quasi-Einstein hypersurface in semi-Riemannian spaces of constant curvature
satisfying (5). The main result (see Theorem 6.2) states that at every point x ∈ UH ⊂ M we have: (i)

R · R =
κ̃

n(n + 1)
Q(g, R) (14)

and

C · C =
n − 3

2(n − 2)

(
κ̃

n + 1
−

κ

n − 1

)
Q(g,C), (15)
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κ being the scalar curvature of M , or (ii) (12),

R · R −
κ̃

n(n + 1)
Q(g, R) 6= 0 (16)

and the tensors C · C and Q(g,C) are linearly independent at this point, or (iii) (16) and

R · S −
κ̃

n(n + 1)
Q(g, S) 6= 0, (17)

and M is 2-quasi-umbilical on some neighbourhood U ⊂ M of x and

C · C = LC Q(g,C) (18)

holds on U , where LC is some function on this set.

2. Preliminaries

Throughout this paper all manifolds are assumed to be connected paracompact manifolds of class C∞. Let (M, g)
be an n-dimensional, n ≥ 3, semi-Riemannian manifold. We denote by ∇, R, C , S and κ the Levi-Civita connection,
the Riemann–Christoffel curvature tensor, the Weyl conformal curvature tensor, the Ricci tensor and the scalar
curvature of (M, g), respectively. The Ricci operator S is defined by g(SX, Y ) = S(X, Y ), where X, Y ∈ Ξ (M)
and Ξ (M) is the Lie algebra of vector fields on M . We define the endomorphisms X ∧A Y , R(X, Y ) and C(X, Y ) of
Ξ (M) by (X ∧A Y )Z = A(Y, Z)X − A(X, Z)Y , R(X, Y )Z = [∇X ,∇Y ]Z − ∇[X,Y ]Z and

C(X, Y ) = R(X, Y )−
1

n − 2

(
X ∧g SY + SX ∧g Y −

κ

n − 1
X ∧g Y

)
,

where X, Y, Z ∈ Ξ (M) and A is a symmetric (0, 2)-tensor. Now the Riemann–Christoffel curvature tensor R,
the Weyl conformal curvature tensor C and the (0, 4)-tensor G of (M, g) are defined by R(X1, X2, X3, X4) =

g(R(X1, X2)X3, X4), C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4) and G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),
where X, Y, Z , X1, X2, . . . ∈ Ξ (M). For symmetric (0, 2)-tensors E and F we define their Kulkarni–Nomizu product
E ∧ F by

(E ∧ F)(X1, X2, X3, X4) = E(X1, X4)F(X2, X3)+ E(X2, X3)F(X1, X4)

− E(X1, X3)F(X2, X4)− E(X2, X4)F(X1, X3).

Further, for a symmetric (0, 2)-tensor E we define the (0, 4)-tensor E by E = (1/2) E ∧ E . In particular, we have
g = G = (1/2) g ∧ g. Now the Weyl tensor C can be presented in the form

C = R −
1

n − 2
g ∧ S +

κ

(n − 2)(n − 1)
G. (19)

We refer to [2,15] for the definition of the tensors: S · R, S · C , R · R, R · C , C · R, C · C , R · S, C · S, Q(g, R),
Q(g,C), Q(g, S), Q(S, R), and Q(S,C). Furthermore, for symmetric (0, 2)-tensors E and F we have (see e.g. [14],
Section 3)

Q(E, F ∧ E) = −
1
2

Q(F, E ∧ E) = −Q(F, E). (20)

Proposition 2.1 ([32], Proposition 2.1). Let (M, g), n ≥ 4, be a semi-Riemannian manifold satisfying (7). Then (4),
with L5 = κ− (n −2)α and L6 = α ((n −1)α−κ), is satisfied on M. Moreover, if (2) and (3) hold on UC ∩US ⊂ M
then (M, g) is an Akivis–Goldberg type manifold.

Proposition 2.2. Let (M, g), n ≥ 4, be a semi-Riemannian manifold. The following conditions are equivalent on
US ⊂ M: (7) and

S = α g ∧ S − α2 G = α2 G + αε g ∧ (w ⊗ w). (21)
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Proof. Our assertion is an immediate consequence of Lemma 3.1 of [30] and (7). �

Proposition 2.3. If (M, g), n ≥ 4, is a semi-Riemannian manifold satisfying (7). Then on M we have

Q(S, g ∧ S) = −
1
2

Q(g, S ∧ S) = −Q(g, S) = −α Q(g, g ∧ S), (22)

Q(g, S) = −
1
2

Q(S − α g, g ∧ S). (23)

Proof. (22) is a consequence of (7), (20) and (21). (23) follows immediately from (22). �

Proposition 2.4 ([32], Proposition 2.3). Let (M, g), n ≥ 4, be a semi-Riemannian manifold satisfying (5). Let V be
a set of all points of UC ∩ US ⊂ M at which (1) or (7) is fulfilled. Then the decomposition of the tensor S · R in terms
R, S, g ∧ S and G is unique on UC ∩ US \ V .

Let (M, g), n ≥ 4, be a semi-Riemannian manifold. It is known that the decomposition of the curvature tensor
R of (M, g) on UC ∩ US ⊂ M given by (1) is unique ([19], Lemma 3.2). If (1) holds on an open non-empty set
U ⊂ UC ∩ US then we say that the Roter type equation is satisfied on this set. If (1) holds on U then on this set we
have ([17], Theorem 4.2): (9), with L R = (n − 2)((µ/φ)(µ− (1/(n − 2)))− η), and

R · R − Q(S, R) =

(
L R +

µ

φ

)
Q(g,C), (24)

S2
= α S + β g, (25)

S · R = −4(αφ + µ) S − 2(αµ+ η + βφ) g ∧ S − 4βµG, (26)

where α = κ+((n−2)µ−1)φ−1 and β = (µκ+(n−1)η)φ−1. In addition, we also have (18) and C ·R = LC Q(g, R),
where LC = L R + (1/(n − 2))((κ/(n − 1))− α). Since (1) implies (24)–(26) we have

Theorem 2.1 ([11], Theorem 3.1). Every Roter type semi-Riemannian manifold (M, g), n ≥ 4, is an Akivis–Goldberg
type manifold.

Proposition 2.5. On every semi-Riemannian Einstein manifold (M, g), n ≥ 4, (4) and (5) are satisfied on M.
Moreover, if (M, g) is pseudosymmetric then (3) holds on M.

Proof. Our proposition is an immediate consequence of (4)–(6) and (19). �

Using the Propositions 2.1 and 2.4 and Theorems 3.3 and 3.4 of [7] we can prove the following

Proposition 2.6. If (3) is satisfied on a conformally flat semi-Riemannian manifold (M, g), n ≥ 4, then (4) and (5)
hold on M.

We finish this section with the following

Lemma 2.1. Let D be a non-zero symmetric (0, 2)-tensor at a point x of a semi-Riemannian manifold (M, g), n ≥ 3.
If the following relation is satisfied at x

D ∧ (w ⊗ w) = 0, (27)

where w ∈ T ∗
x M and w 6= 0, then at this point we have

(a) D = ρ w ⊗ w, ρ ∈ R, or (b) rank D = 2. (28)

Proof. From (27) we have

whwk Di j + wiw j Dhk − whw j Dik − wiwk Dhj = 0, (29)

where wh and Dhk are the local components of w and D, respectively. Further, let Xh be the local components of the
vector X at x such that wh Xh

= 1 at x .
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(i) We assume that rank D = 1, i.e. D = ε v ⊗ v, where v ∈ T ∗
x M , ε = ±1. Now (29) takes the form

whwkviv j + wiw jvhvk − whw jvivk − wiwkvhv j = 0.

This by transvection with Xh X k yields (vi + ρ1wi )(v j + ρ1w j ) = 0, where ρ1 = vk X k , which implies immediately
(28)(a).

(ii) We now assume that rank D ≥ 2. Transvecting (29) with Xh X k we get

Di j = β wiw j + w j zi + wi z j , zi = Dih Xh, β = −Xh X k Dhk . (30)

If β = 0 then (30) yields

Di j =
1
2
((wi + zi )(w j + z j )− (wi − zi )(w j − z j )). (31)

If β 6= 0 then (30) yields

Di j = β

(
wi +

1
β

zi

)(
w j +

1
β

z j

)
−

1
β

zi z j . (32)

From (31) and (32) it follows that rank D = 2 at x , i.e. (28)(b), which completes the proof. �

3. Ricci-pseudosymmetric hypersurfaces

Let M with dim M = n ≥ 3 be a connected hypersurface immersed isometrically in a semi-Riemannian manifold
(N , gN ). We denote by g the metric tensor induced on M from the metric tensor gN . Further, we denote by ∇

and ∇
N the Levi-Civita connections corresponding to the metric tensors g and gN , respectively. Let ξ be a local

unit normal vector field on M in N and let ε = gN (ξ, ξ) = ±1. We can present the Gauss formula and the
Weingarten formula of (M, g) in (N , gN ) in the form: ∇

N
X Y = ∇X Y + ε H(X, Y ) ξ and ∇Xξ = −AX , respectively,

where X, Y are vector fields tangent to M , H is the second fundamental tensor of (M, g) in (N , gN ), A is the
shape operator and H k(X, Y ) = g(Ak X, Y ), k ≥ 1, H1

= H and A1
= A. We denote by R and RN the

Riemann–Christoffel curvature tensors of (M, g) and (N , gN ), respectively. The Gauss equation of (M, g) in (N , gN )

has the form R(X1, . . . , X4) = RN (X1, . . . , X4)+ ε H(X1, . . . , X4), where H = (1/2) H ∧ H and X1, . . . , X4 are
vector fields tangent to M . Let the equation xr

= xr (yk) be the local parametric expression of (M, g) in (N , gN ),
where yk and xr are the local coordinates of M and N , respectively, and a, b, h, i, j, k, l,m ∈ {1, 2, . . . , n} and
p, r, t, u ∈ {1, 2, . . . , n + 1}. Let H hi jk = Hhk Hi j − Hhj Hik denote the local components of the tensor H .

Let M be a hypersurface in N n+1
s (c), n ≥ 4, c = κ̃/(n(n +1)), where κ̃ denotes the scalar curvature of the ambient

space. Now the Gauss equation reads (see e.g. [12])

Rhi jk = ε H hi jk +
κ̃

n(n + 1)
Ghi jk, (33)

where Ghi jk are the local components of the tensor G of M . Contracting (33) with gi j and gkh , respectively, we obtain

Shk = ε (tr(H) Hhk − H2
hk)+

(n − 1)̃κ
n(n + 1)

ghk, (34)

κ = ε ((tr(H))2 − tr(H2))+
(n − 1)̃κ

n + 1
, (35)

respectively, where tr(H) = ghk Hhk , tr(H2) = ghk H2
hk and Shk are the local components of the Ricci tensor S of

M . Further, we define on M the (0, 2)-tensor A by (see Eq. (13) of [15])

A = H3
− tr(H) H2

+
εκ

n − 1
H. (36)

Now we can check that on M we have (see Eq. (34) of [11])

S · R = 2 H ∧ A − 4
(
(n − 1)̃κ
n(n + 1)

+
κ

n − 1

) (
R −

κ̃

n(n + 1)
G

)
−

2̃κ
n(n + 1)

g ∧ S. (37)
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We denote by UH the set of all points of M at which the tensor H2 is not a linear combination of the metric tensor g and
the second fundamental tensor H of M . Using (34) and Theorem 4.1 of [25] we can deduce that UH ⊂ UC ∩US ⊂ M .
Obviously, on UC ∩ US \ UH we have

H2
= α H + β g, (38)

where α and β are some functions on UC ∩ US \ UH . Using (33) and (38) we can verify that

R · R =

(
κ̃

n(n + 1)
− ε β

)
Q(g, R)

on UC ∩ US \ UH (cf. [21], Proposition 3.1(ii)). Thus (9) holds on this set. Further, we have

Theorem 3.1 ([32], Theorem 3.1). Let M be a hypersurface in N n+1
s (c), n ≥ 4, and let UC ∩ US \ UH ⊂ M

be non-empty. Then the Roter equation holds on this set. Moreover, if UH ⊂ M is empty then M is a Roter type
hypersurface.

From this it follows

Corollary 3.1 ([32], Corollary 3.1). Let M be a hypersurface in a Riemannian space of constant curvature N n+1(c),
n ≥ 4. If at every point of UC ∩ US the hypersurface M has exactly two distinct principal curvatures then M is a
Roter type hypersurface.

Remark 3.1 ([32], Remark 3.1). Let M be a hypersurface in a Riemannian space of constant curvature N n+1(c),
n ≥ 4. If at a point of UC ∩ US ⊂ M there are exactly two distinct principal curvatures then multiplicity of each
principal curvature is ≥ 2.

Remark 3.2. (i) (cf. [11], Section 2). Let M be a pseudosymmetric hypersurface in N n+1
s (c), n ≥ 4, and let (9) holds

on UC ∩ US ⊂ M . Then

Q

(
S −

(
L R +

(n − 2)̃κ
n(n + 1)

)
g, R −

κ̃

n(n + 1)
G

)
= 0 (39)

on UC ∩ US ([10], Eq. 3.8). Let V ⊂ UC ∩ US be the set of all points at which rank (S − α g) ≥ 2, for any α ∈ R.
Now from (39), in view of Lemma 3.4(ii) of [17], it follows that

R =
L

2

(
S −

(
L R +

(n − 2)̃κ
n(n + 1)

)
g

)
∧

(
S −

(
L R +

(n − 2)̃κ
n(n + 1)

)
g

)
+

κ̃

n(n + 1)
G

on V , where L is some function on V . Thus we see that (1) holds on V . An example of a quasi-Einstein
pseudosymmetric hypersurface M in N n+1

s (c), n ≥ 4, was given in [19]. For that hypersurface we have rank (S −

(κ/n) g) = 1 on UH ⊂ M .
(ii) (cf. [36], Lemma 4.2). If M is a hypersurface in N n+1

s (c), n ≥ 4, satisfying at x ∈ UH ⊂ M the condition

Q

(
S − α g, R −

κ̃

n(n + 1)
G

)
= 0

then (14) holds at x , where α ∈ R.

Remark 3.3. Let M be a hypersurface in N n+1
s (c), n ≥ 4.

(i) (cf. [5], Proposition 3.2 and Theorem 3.1). On the set UH ⊂ M the following conditions are equivalent: (12) and

H3
= tr(H) H2

+ λ H, (40)

where λ is some function on UH . We refer to [22,31] for results on Ricci-pseudosymmetric hypersurfaces.
(ii) We refer to [37,38] for recent results on hypersurfaces satisfying

H3
= tr(H) H2

+ λ H + µg,

where λ and µ are some functions on UH .
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Proposition 3.1. Let M be a hypersurface in N n+1
s (c), n ≥ 4. If (12) and (16) hold at x ∈ UH ⊂ M then the tensors

C · C and Q(g,C) are linearly independent at this point.

Proof. In Remark 3.3(i) it was mentioned that (12) and (40) are equivalent at x . Further, from Proposition 4.2
from [36] it follows that

(n − 2)C · C = (n − 3) Q(S, R)+ β5 Q(g, R)+ β6 Q(S,G) (41)

at x , where β5, β6 ∈ R are defined by (35) of [36]. We suppose that C · C = L Q(g,C), L ∈ R, holds at x . Now (41),
by making use of (19) and (20), gives

(n − 2)L Q(g, R)+ L Q(S,G) = (n − 3) Q(S, R)+ β5 Q(g, R)+ β6 Q(S,G),

which turns into

Q(S, R)+
1

n − 3
(β5 − (n − 2)L) Q(g, R)+

1
n − 3

(β6 − L) Q(S,G) = 0.

This, in view of Lemma 4.1 of [36], implies

Q

(
S −

(n − 1)̃κ
n(n + 1)

g, R −
κ̃

n(n + 1)
G

)
= 0.

But from the last relation, by an application of Remark 3.2(ii), it follows that (14) holds at x , a contradiction. �

4. Quasi-Einstein hypersurfaces

Let M be an quasi-Einstein non-Einstein hypersurface in N n+1
s (c), n ≥ 4. In the following we will assume that

UC ∩ US ⊂ M is non-empty.

Lemma 4.1. Let M be a hypersurface in N n+1
s (c), n ≥ 4, satisfying (7) on UC ∩ US ⊂ M.

(i) The sets UH ⊂ M and UC ∩ US ⊂ M coincide.
(ii) At every x ∈ UH we have

wl Hlk = ρ wk, wk
= wl g

lk, (42)

where ρ is some function on UH and Hkl and wl are the local components of H and w at x, respectively.
(iii) On UH we have

H3
= (tr(H)+ ρ) H2

+ ε

(
(n − 1)̃κ
n(n + 1)

− α − ερtr(H)

)
H + ερ

(
α −

(n − 1)̃κ
n(n + 1)

)
g, (43)

H4
=

(
(tr(H)+ ρ)2 − ρtr(H)+ ε

(
(n − 1)̃κ
n(n + 1)

− α

))
H2

+

(
ε(tr(H)+ ρ)

(
(n − 1)̃κ
n(n + 1)

− α − ερtr(H)

)
+ ερ

(
α −

(n − 1)̃κ
n(n + 1)

))
H

+ ερ(tr(H)+ ρ)

(
α −

(n − 1)̃κ
n(n + 1)

)
g, (44)

H4
= (2tr(H)(tr(H)+ ρ)+

2(n − 1)εκ̃
n(n + 1)

− (tr(H))2 − ε(κ − (n − 2)α)) H2

+ εtr(H)(κ − nα − 2ερtr(H)) H +

(
2ερtr(H)

(
α −

(n − 1)̃κ
n(n + 1)

)
−

(
(n − 1)̃κ
n(n + 1)

)2

+
(n − 1)̃κ
n(n + 1)

(κ − (n − 2)α)+ α((n − 1)α − κ)

)
g, (45)

ρ(ρ − tr(H)) = (n − 1)ε
(

κ̃

n(n + 1)
−

κ

n − 1
+ α

)
. (46)
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Proof. (i) In Section 3 it was stated that for any hypersurface M in N n+1
s (c), n ≥ 4, we have UH ⊂ UC ∩US . Further,

let x ∈ UC ∩US \UH . Thus at x we have H2
= α1 H +β1 g, α1, β1 ∈ R. Substituting this and (7) into (34) we obtain

ε(tr(H)− α1) H =

(
α + εβ1 −

(n − 1)̃κ
n(n + 1)

)
g + ε w ⊗ w. (47)

If tr(H) − α1 = 0 then α + εβ1 − ((n − 1)̃κ)/(n(n + 1)) = 0 and w = 0. Thus (7) reduces to S = (κ/n) g,
i.e. x ∈ M \ US , a contradiction. If tr(H)− α1 6= 0 then (47) turns into

H = α2 g + β2w ⊗ w, α2, β2 ∈ R, (48)

i.e. M is quasi-umbilical at x . It is known that (48) implies C = 0 at x ([25], Theorem 4.1), i.e. x ∈ M \ UC , again a
contradiction. Thus UC ∩ US \ UH is empty.
(ii) (cf. the proof of Theorem 2.1 of [22]). Using (7) and (34) we find

α gi j + ε wiw j = ε (tr(H) Hi j − H2
i j )+

(n − 1)̃κ
n(n + 1)

gi j (49)

and after transvection with H i
k = gil Hlk also

α H jk + ε wi H i
kw j = ε (tr(H) H2

jk − H3
jk)+

(n − 1)̃κ
n(n + 1)

H jk . (50)

But this implies (42).
(iii) (43) is a consequence of (42), (49) and (50). Further, (43) yields

H4
= (tr(H)+ ρ) H3

+ ε

(
(n − 1)̃κ
n(n + 1)

− α − ερtr(H)

)
H2

+ ερ

(
α −

(n − 1)̃κ
n(n + 1)

)
H,

which by making use of (43) turns into (44). Applying into (8) the identity (2.19) of [11], (34) and (43) we obtain
(45). Finally, comparing the right hand sides of (44) and (45) we get (46). The last remark completes the proof. �

Lemma 4.2. Let M be a hypersurface in N n+1
s (c), n ≥ 4, satisfying (7) on UH ⊂ M. Then

(a) Q(S − α g, H ∧ (w ⊗ w)) = 0, (b) A = φ H + ψ w ⊗ w, (51)

S · R = −4α
(

R −
κ̃

n(n + 1)
G

)
−

2̃κ
n(n + 1)

g ∧ S + 2ψ H ∧ (w ⊗ w), (52)

(a) φ = ε

(
(n − 1)̃κ
n(n + 1)

+
κ

n − 1
− α

)
, (b) ψ = −εερ, (53)

on this set, where A and ρ are defined by (36) and (42), respectively.

Proof. Using (20) and (7)we get

Q(S − α g, H ∧ (w ⊗ w)) = ε Q(w ⊗ w, H ∧ (w ⊗ w)) = −
ε

2
Q(H, (w ⊗ w) ∧ (w ⊗ w)) = 0,

i.e. (51)(a). Further

H3
− tr(H) H2

= ε

(
(n − 1)̃κ
n(n + 1)

− α

)
H − εερ w ⊗ w (54)

on UH (see the proof of Theorem 2.1 of [22]). Applying (36) into (54) we obtain (51)(b). Now (37), by making use
of (51)(b), turns into

S · R = 4φ H − 4
(
(n − 1)̃κ
n(n + 1)

+
κ

n − 1

) (
R −

κ̃

n(n + 1)
G

)
−

2̃κ
n(n + 1)

g ∧ S + 2ψ H ∧ (w ⊗ w).

This, by an application of (33), yields (52), which completes the proof. �
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Proposition 4.1. Let M be a hypersurface in N n+1
s (c), n ≥ 4, satisfying (7) on UH ⊂ M. If at x ∈ UH the following

condition is satisfied

ρ0 R = ρ1 S + ρ2 g ∧ S + ρ3 G + ρ4 H ∧ (w ⊗ w), (55)

where ρ0, . . . , ρ4 ∈ R, then ρ0 vanishes at x or at x we have: ρ0 6= 0, (14),

(a)
κ

n − 1
=

κ̃

n + 1
, (b) ρ = 0, (c) S =

κ

n
g + ε w ⊗ w. (56)

Proof. We suppose that ρ0 6= 0 at x . Now (55) turns into

R = ρ̄1 S + ρ̄2 g ∧ S + ρ̄3 G + ρ̄4 H ∧ (w ⊗ w),

where ρ̄0, . . . , ρ̄4 ∈ R. The last relation yields

Q(S − α g, R) = ρ̄1 Q(S − α g, S)+ ρ̄2 Q(S − α g, g ∧ S)

+ ρ̄3 Q(S − α g,G)+ ρ̄4 Q(S − α g, H ∧ (w ⊗ w)).

Applying in this (20), (22) and (51)(a) we find

Q(S − α g, R) = η Q(S,G), η = α2ρ̄1 + 2αρ̄2 + ρ̄3,

which gives Q(S − α g, R − ηG) = 0. This, together with (7), implies

Q(w ⊗ w, R − ηG) = 0. (57)

Further, from (57), in view of Lemma 3.4(i) of [17], we obtain at x∑
X1,X2,X3

w(X1) (R − ηG)(X2, X3, X4, X5) = 0,

where X1, . . . , X5 ∈ Tx M . Now, using Lemma 2.3 of [20] we get

R · R =
κ

(n − 1)n
Q(g, R), (58)

R · R − Q(S, R) = −
(n − 2)κ
(n − 1)n

Q(g,C). (59)

(11) and (59) lead immediately to (56)(a). Now (58) by (56)(b) turns into (14). Next, from (14) we get easily
R · C = (̃κ/(n(n + 1))) Q(g,C), which implies∑

(X1,X2), (X3,X4), (X,Y )

(R · C)(X1, X2, X3, X4; X, Y ) = 0.

This, in virtue of Proposition 4.1 of [15], is equivalent to∑
(X1,X2), (X3,X4), (X,Y )

(R · C − C · R)(X1, X2, X3, X4; X, Y ) = 0.

Thus we see that the assumptions of Theorem 2.1 of [22] are fulfilled. In particular, from that theorem we have (see
Eq. (16) and (17) of [22])

(a) ε ‖w‖
2

=
κ̃

n + 1
−

κ

n − 1
, (b) wk Hkl = 0. (60)

Evidently, (56)(a) and (60)(a) yield

‖w‖
2

= 0. (61)

Furthermore, (42) and (60)(b) give (56)(b). From (7), by contraction, we obtain κ − nα = ε ‖w‖
2, which by (61)

reduces to α = κ/n. This means that (7) turns into (56)(c). The last remark completes the proof. �
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Proposition 4.2. Let M be a pseudosymmetric hypersurface in N n+1
s (c), n ≥ 4. If (56)(c) holds on UH ⊂ M then

on this set we have: (14) and (56)(a),

S −
κ

n
g ∧ S +

(κ
n

)2
G = 0 (62)

and an equality of the form (55)

(tr(H))2 R = S −
κ

n
g ∧ S +

κ

n

(
κ

n
+
(tr(H))2

n − 1

)
G +

ε tr(H)

2
H ∧ (w ⊗ w), (63)

where w and ε are defined by (56)(c).

Proof. First of all we note that (56)(c) yields (1/2) (S − (κ/n) g) ∧ (S − (κ/n) g) = 0. Now (62) is an immediate
consequence of the last relation. It is known that if M is a pseudosymmetric hypersurface then rank H = 2 and (14)
holds on UH (e.g. see [5]). Thus in view of Lemma 1.1 of [9] at every point of UH we have

H3
i j = tr(H) H2

i j + λ Hi j , λ ∈ R. (64)

Further, (14) and (39) lead to

Q

(
S −

(n − 1)̃κ
n(n + 1)

g, R −
κ̃

n(n + 1)
G

)
= 0. (65)

If we would have rank (S − ((n − 1)̃κ)/(n(n + 1)) g) ≥ 2 at a point x ∈ UH then (65), in view of Lemma 3.4(ii) of
[17], implies

R −
κ̃

n(n + 1)
G = λ

(
S −

(n − 1)̃κ
n(n + 1)

g

)
∧

(
S −

(n − 1)̃κ
n(n + 1)

g

)
, λ ∈ R,

which turns into (1). But (1) and (56)(c) imply C = 0, a contradiction. Thus at every x ∈ UH we have

S −
(n − 1)̃κ
n(n + 1)

g = ε1w1 ⊗ w1, ε1 = ±1, w1 ∈ T ∗
x M.

This and (56)(c) lead to ε = ε1, w = w1 and (56)(a) at every x ∈ UH (cf. [18], Section 3). Now (34) turns into

H2
hk = tr(H) Hhk − εε whwk . (66)

Transvecting this with H h
j and using (64), in a standard way (for instance, see the proof of Proposition 5.1(iii) of [19])

we get (60)(b). On the other hand, we note that (65) by (33) takes the form

Q

(
S −

(n − 1)̃κ
n(n + 1)

g, H

)
= 0.

This implies that (e.g. see Lemma 3.4(i) of [17])

wl H hi jk + w j H hikl + wk H hil j = 0 (67)

at every point of UH . Transvecting (67) with H h
m and using (60)(b) we get

wl(H
2
hk Hi j − H2

hj Hik)+ w j (H
2
hl Hik − H2

il Hhk) = 0.

Transvecting this with H j
m and using again (60)(b) we find that H2

hk H2
i j − H2

hj H2
ik = 0. This, by making use of (66),

turns into

(tr(H) H − εε w ⊗ w) ∧ (tr(H) H − εε w ⊗ w) = 0,

which gives

ε

2
(tr(H))2 H ∧ H =

εtr(H)

2
H ∧ (w ⊗ w).

Finally, applying to this (33) and using (56)(a) and (62) we obtain (63), completing the proof. �
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Remark 4.1. Results presented in Examples 4.1 and 5.1 of [14] were applied in [19]. Namely, in Example 5.1 of [19]
an example of a quasi-Einstein pseudosymmetric hypersurface M in N n+1

s (c), n ≥ 4, satisfying (56)(c) on UH ⊂ M
was given. It is easy to check that tr(H) 6= 0 holds at every point of UH of that hypersurface. Thus by (63) we can
state that on UH we have (55) with non-zero function ρ0.

5. 2-quasi-umbilical hypersurfaces

A hypersurface M in an (n + 1)-dimensional Riemannian manifold is said to be quasi-umbilical, resp. 2-quasi-
umbilical [4], at a point x ∈ M when it has a principal curvature with multiplicity ≥ n − 1, resp. ≥ n − 2, i.e. when
the principal curvatures of M at x are given by λ1, τ, . . . τ , resp. λ1, λ2, τ, . . . τ , where τ occurs (n − 1)-times, resp.
(n − 2)-times. Further, if M is a hypersurface in an (n + 1)-dimensional semi-Riemannian manifold then M is called
quasi-umbilical (e.g. see [25]), resp. 2-quasi-umbilical (e.g. see [26]), at a point x ∈ M when rank (H − α g) = 1,
resp. rank (H − α g) = 2 hold at x , for some α ∈ R.

Remark 5.1. It is known that a hypersurface M in a semi-Riemannian conformally flat manifold is quasi-umbilical
at a point x ∈ M if and only if its Weyl tensor vanishes at this point (Theorem 4.1, [25]). Therefore every point
of UC ⊂ M is a non-quasi-umbilical point of M . It is also known that if M is a 2-quasi-umbilical hypersurface in
N n+1

s (c), n ≥ 4, then (18) holds on UC ⊂ M (Theorem 3.1, [26]).

Proposition 5.1. Let M be a hypersurface in N n+1
s (c), n ≥ 4. If on UH ⊂ M we have rank (H − τ g) = 2, for some

function τ , then

H3
= (tr(H)− (n − 3) τ ) H2

−

(
(n − 3)(n − 2)

τ 2

2
− (n − 3)τ tr(H)+

1
2
((tr(H))2 − tr(H2))

)
H

+ τ((n − 2)(n − 1)
τ 2

2
− (n − 2)τ tr(H)+

1
2
((tr(H))2 − tr(H2))) g (68)

on this set. Moreover, if (7) holds on UH then

ρ = −(n − 3) τ, (69)

(n − 2)(n − 1)
n(n + 1)

κ̃ − κ + 2α = (n − 2)(n − 1)ε τ 2, (70)

τ

(
3(n − 2)(n − 1)

n(n + 1)
κ̃ − κ − 2(n − 3)α

)
= ε(n − 2) τ 2 ((n − 1)τ − 2tr(H)), (71)

on this set, where the function ρ is defined by (42).

Proof. We obtain (68) by an application of Lemma 2.1(i) of [11] for the tensor A = H − τ g. Now the relations
(69)–(71) are an immediate consequence of (35), (43) and (68). �

Proposition 5.2. Let M be a hypersurface in a Riemannian space of constant curvature N n+1(c), n ≥ 4.

(i) Let (7) holds at x ∈ UH ⊂ M and let M has at x exactly three distinct principal curvatures λ1, λ2 and λ3. If
λ1 = ρ satisfies (42) then λ1 is a principal curvature of multiplicity 1 and

λ1 = −(p − 1) λ2 − (n − p − 2) λ3 (72)

at this point, where p and n − p − 1 is multiplicity of λ2 and λ3, respectively.
(ii) Let M has at x ∈ UH ⊂ M three distinct principal curvatures λ1, λ2, λ3 with multiplicity 1, p and n − p − 1,

respectively. If (72) holds at x then

rank
(

S −

(
(n − 1)̃κ
n(n + 1)

+ λ2λ3

)
g

)
= 1, (73)

i.e. M is quasi-Einstein at this point.
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Proof. (i) Let e1, e2, . . . , en be an orthonormal basis at Tx M such that H(ei , ei ) = λi and H(ei , e j ) = Hi j = 0 for
i 6= j , where i, j ∈ {1, 2, . . . , n}. Now (49) implies

(a) ψ + ε w2
i = (tr(H)− λi )λi , (b) wiw j = 0, for i 6= j, (74)

where ψ = α − ((n − 1)̃κ)/(n(n + 1)). Without loss of generality we can assume that w1 6= 0. Thus (74)(b) implies
w2 = w3 = · · · = wn = 0. Using this and (74)(a) we find that

(a) ψ + ε w2
1 = (tr(H)− λ1)λ1, (b) nψ + ε w2

1 = (tr(H))2 − tr(H2),

(c) ψ = (tr(H)− λ2)λ2, (d) ψ = (tr(H)− λ3)λ3. (75)

From (74)(a) and (75)(a) it follows that λ1 has multiplicity 1. Furthermore, from (75)(c) and (75)(d) it follows that
(λ2 − λ3)(tr(H)− λ2 − λ3) = 0. Thus we have (72), tr(H) = λ2 + λ3 and ψ = λ2λ3, which completes the proof of
(i).
(ii) First of all we note that (34) holds at x , where ε = 1. Further, let e1, e2, . . . , en be an orthonormal basis at Tx M
such that

H(ei , e j ) = Hi j = 0, for i 6= j,

H(e1, e1) = H11 = λ1,

H(e2, e2) = H22 = λ2, . . . , H(ep+1, ep+1) = Hp+1 p+1 = λ2,

H(ep+2, ep+2) = Hp+2 p+2 = λ3, . . . , H(en, en) = Hnn = λ3,

where i, j ∈ {1, 2, . . . , n}. Using this and (72) we get

Hi j (tr(H)− Hi j ) = 0, for i 6= j,

H11(tr(H)− H11) = λ1(pλ2 + (n − p − 1) λ3),

H22(tr(H)− H22) = · · · = Hnn(tr(H)− Hnn) = λ2λ3.

Applying this into (34) we get (73), which completes the proof of (ii). �

6. Quasi-Einstein Cartan type hypersurfaces

Let M be a hypersurface in N n+1
s (c), n ≥ 4, satisfying (5) and (7) on UH ⊂ M . We define on UH the (0, 2)-tensor

D by

D = ε

(
αL1 + L2 +

2̃κ
n(n + 1)

)
g − 2ψ H, (76)

where ψ is defined by (53)(b), i.e. ψ = −εερ. We note that rank D 6= 1 at every point of UH . Indeed, if rank D = 1
at a point x ∈ UH then M is quasi-umbilical at x which by Remark 5.1 is equivalent to the fact that the Weyl tensor C
of M vanishes at x , a contradiction. We now consider the quasi-Einstein hypersurfaces satisfying (2), i.e. the special
case of (5).

Proposition 6.1. Let M be a hypersurface in N n+1
s (c), n ≥ 4, satisfying (2) and (7) on UH ⊂ M. Then at every

x ∈ UH we have: α 6= 0 and (14), or α = 0, L3 = 0,

(a) S = ε w ⊗ w, (b) D ∧ (w ⊗ w) = 0. (77)

Proof. We note that (2) and (52) yield

−4α R = L1 S +

(
L2 +

2̃κ
n(n + 1)

)
g ∧ S +

(
L3 −

4ακ̃
n(n + 1)

)
G − 2ψ H ∧ (w ⊗ w). (78)

If α 6= 0 at x then, in view of Proposition 4.1, (14) holds at x . Now we consider the case α = 0 at x . Thus (7) reduces
to (77)(a). Further, (78) turns into(

L2 +
2̃κ

n(n + 1)

)
g ∧ S + L3 G = 2ψ H ∧ (w ⊗ w).
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This, by (77)(a), yields(
ε

(
L2 +

2̃κ
n(n + 1)

)
g − 2ψ H

)
∧ (w ⊗ w) = −L3 G, (79)

which gives

Q

(
w ⊗ w,

(
ε

(
L2 +

2̃κ
n(n + 1)

)
g − 2ψ H

)
∧ (w ⊗ w)

)
= −L3 Q(w ⊗ w,G).

From this, by making use of (20), we obtain

−
1
2

Q

((
ε

(
L2 +

2̃κ
n(n + 1)

)
g − 2ψ H

)
, (w ⊗ w) ∧ (w ⊗ w)

)
= −L3 Q(w ⊗ w,G),

which reduces to L3 Q(w ⊗ w,G) = 0. From the last equation it follows that L3 = 0 at x . Applying this, (76) and
(77)(a) into (79) we get (77)(b). Our proposition is thus proved. �

Proposition 6.2. Let M be a hypersurface in N n+1
s (c), n ≥ 4, satisfying (5) and (7) on UH ⊂ M. Then at every

x ∈ UH we have:
(i) (14) and

L0 + 4α 6= 0, (80)

or (ii) (77)(b) and

(a) L0 + 4α = 0, (b) α2 L1 + 2α L2 + L3 = 0. (81)

Proof. We note that (5) and (52) yield

(L0 + 4α) R + L1 S +

(
L2 +

2̃κ
n(n + 1)

)
g ∧ S +

(
L3 −

4ακ̃
n(n + 1)

)
G − 2ψ H ∧ (w ⊗ w) = 0. (82)

If (80) holds at x then, in view of Proposition 4.1, at this point (14) is satisfied. We assume now that (81)(a) holds at
x . Now (82) takes the form

L1 S +

(
L2 +

2̃κ
n(n + 1)

)
g ∧ S +

(
L3 −

4ακ̃
n(n + 1)

)
G − 2ψ H ∧ (w ⊗ w) = 0. (83)

Further, (51)(a) and (83) give

L1 Q(S − α g, S)+

(
L2 +

2̃κ
n(n + 1)

)
Q(S − α g, g ∧ S)+

(
L3 −

4ακ̃
n(n + 1)

)
Q(S − α g,G) = 0,

which by (23) turns into

Q(S − α g,Φ1g ∧ S + Φ2 G) = 0, (84)

Φ1 =
αL1

2
+ L2 +

2̃κ
n(n + 1)

, Φ2 = L3 −
4ακ̃

n(n + 1)
. (85)

Now (84), by making use of (7) and (51)(a), reduces to (2αΦ1 + Φ2) Q(w ⊗ w,G) = 0, which implies

Φ2 = −2αΦ1. (86)

This by (85) leads to (81)(b). Applying (21), (85) and (86) into (83) we obtain (77)(b), which completes the proof.
�

Theorem 6.1. Let M be a hypersurface in a Riemannian space of constant curvature N n+1(c), n ≥ 4, satisfying (5)
and (7) on UH ⊂ M. Then (12) and (16) hold at every point of UH .
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Proof. We suppose that (80) holds at a point x ∈ UH . Thus, in view of Proposition 6.2, (14) is satisfied at x . Further,
from Theorem 5.1 of [10] it follows that rank H = 2 at x , i.e. M has the principal curvatures λ1 6= 0, λ2 6= 0 and
λ3 = · · · = λn = 0. Now, in view of Proposition 5.2(i), we conclude that λ1 = 0, a contradiction. Therefore (16)
and (77)(b) and (81)(a) hold at x . We can assume that the local components of the covector w, defined by (7), are the
following w1 6= 0, w2 = · · · = wn = 0. Now (77)(b) takes the form Di j = 0, which by (76) and Remark 5.1 implies
ρ = 0. Thus (43) reduces to (40). But this, in view of Remark 3.3(i), is equivalent to (12). Our theorem is thus proved.

�

Proposition 6.3. Let M be a hypersurface in N n+1
s (c), n ≥ 4, satisfying at x ∈ UH ⊂ M the conditions: (5), (7) and

(16) and let D be the tensor defined by (76). Then at x we have: D = 0 or rank D = 2.

Proof. From Proposition 6.2 it follows that (77)(b) holds on UH . Since rank D 6= 1, our assertion is an immediate
consequence of Lemma 2.1. �

Theorem 6.2. Let M be a hypersurface in N n+1
s (c), n ≥ 4, satisfying (5) and (7) on UH ⊂ M. Then at every x ∈ UH

we have:

(i) (14) and (15) hold at x, or
(ii) (12) and (16) hold at x and the tensors C · C and Q(g,C) are linearly independent at this point, or

(iii) (17) holds at x and M is 2-quasi-umbilical on some neighbourhood U ⊂ M of x and (18) is satisfied on this set.

Proof. (i) Let rank H = 2 at x . It is known that this is equivalent to (14) (e.g. see Theorem 3.2 of [36]). In addition,
in view of Proposition 4.3 of [36], (15) holds at x .
(ii) Let rank H > 2 and (12) holds at x . Clearly, rank H > 2 implies (16) at x . Now, in view of Proposition 3.1, C · C
and Q(g,C) are linearly independent at x .
(iii) Let rank H > 2 and (17) hold at x . If the tensor D, defined by (76), vanishes at x then ψ = −εερ = 0, and in
a consequence ρ = 0 at x . Thus (43) reduces to (40), which by Remark 3.3(i) is equivalent to (12), a contradiction.
Therefore D is non-zero at x . Now, in view of Proposition 6.3, on some neighbourhood U of x we have rank D = 2.
This, together with (76), implies rank (H − τ g) = 2 on U , where τ is some function on U . Now, in view of Theorem
3.1 of [26], (18) holds on U . The last remark completes the proof. �
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[14] R. Deszcz, M. Głogowska, M. Hotloś, Z. S. entürk, On certain quasi-Einstein semisymmetric hypersurfaces, Ann. Univ. Sci. Budapest. Eötvös
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